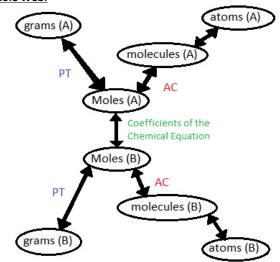
General Chemistry I Equations & Info



Significant Figures:

- 1) Any non-zero number is significant (1-9)
- 2) Any zero between two non-zero numbers is significant (203)
- 3) Any zero to the right of a non-zero and to the left of a decimal is significant (100.)
- 4) Any zero to the right of a non-zero and a decimal is significant (1.00)
- 5) Any zero to the left of a non-zero is not significant (0.001 or 01.)

 \times /÷ number of significant figures is dependent of smallest number of significant figures of products. (25×5=125 \rightarrow 100) +/- number of significant figures dependent of smallest number of decimal places of added or subtracted numbers. (1.0+0.05+2.002=3.052 \rightarrow 3.1)

Mole Web:

(A) and (B) are any compounds in the Chemical Equation. PT-Find molar mass from periodic table. AC-Avogadro's Constant: (6.02x10²³ molecules/mole)

<u>Percent Yield</u> = <u>Actual Yield</u> ×100% Theoretical Yield

Percent Error = |measured value-accepted value| ×100% accepted value

Molarity = moles solute
1 L solution

<u>Molality</u> = <u>moles of solute</u> volume (kg) solvent

Mole Fraction = moles (A) moles (A) +moles (B) +....

Mass Percent = mass (A) ×100% total mass

ICE Table:

I-initial number of moles Δ -the change in moles E-end number of moles

Ex: If you start with 20 moles of Li₂O and 15 moles of BeCl₂, how much BeO and LiCl will you end up with?

	Li ₂ O	+ BeCl ₂	> BeO ·	+ 2LiC
l	20	15	0	0
Δ	-15	-15	+15	+30
E	5	0	15	30

So for the above reaction, when you start with 20 moles of Li_2O and 15 moles of BeCL_2 , you end up with 5 moles of Li_2O , 15 moles of BeO, and 30 moles of LiCl. BeCl_2 was the Limiting Reagent.

General Naming of Compounds:

(Ionic) Metal - Non-Metal (no prefix)Metal name (no prefix)Non-Metal Name(ide)

Li₂O Lithium Oxide MgCl₂ Magnesium Chloride

H₂O Dihydrogen Monoxide
 N₂O₃ Dinitrogen Trioxide
 SCl₂ Sulfur Dichloride

Ideal Gas Law: PV=nRT

P: pressure (usually atm)

V: volume (L)

n: number of moles

R: (a constant that varies 0.082 L*atm or 0.008314 kJ with units used) mole*K mole*K

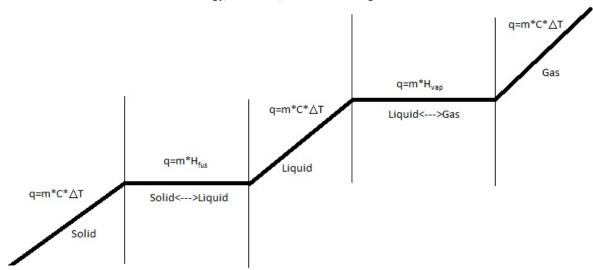
T: temperature (K)

1 mole of any gas takes up 22.5 L of space at STP.

STP means Standard Temperature and Pressure. Usually 273K and 1atm.

<u>Dilutions</u>: $C_1V_1 = C_2V_2$

 $C_1V_1 + C_2V_2 = C_fV_f$


C = concentration (M) of a solution

V = volume (L) of the container the solution is in

Quantum Numbers (n, l, m _l , m _s)						Subshells		
(n) shell #	(I) subshells	(I) subshell	(m _I) orbital lables	(m _s) electron	total # of	Subshell	Orbitals 6	electrons
	biggest is (n-1)	names		spins in orbitals	electrons	Name		
1	0	S	0	-1/2, 1/2	2	S	-	2
2	1, 0	p, s	-1, 0, 1	-1/2, 1/2	8	р		6
3	2, 1, 0	d, p, s	-2, -1, 0, 1, 2	-1/2, 1/2	18	d		10
4	3, 2, 1, 0	f, d, p, s	-3, -2, -1, 0, 1, 2, 3	-1/2, 1/2	32	f		14

Energy/Heat used/released to Change Phase

Heat of Reaction:

 $q=m*C*\Delta T$

q=Energy/Heat (J or kJ)

m=mass (g or kg)

ΔT=Change in Temperature (K)

 $\Delta T = T_f - T_i$

T_f=Final Temperature (K)

T_i=Initial Temperature (K)

(2) For Water (H₂O)

 $C_{\text{solid water}} = 2.11 \text{ J/(g*K)}$

 $H_{fus} = 333.6 (kJ/kg)$

 $H_{vap} = 2258.7 (kJ/kg)$

 $C_{liquid water} = 4.22 J/(g*K)$ $C_{\text{water vapor}} = 2.08 \text{ J/(g*K)}$

Density Equations:

D = m*PR*T

D = m

D=Density (g/L)

m=molar mass (g/mole) P=Pressure (atm)

m=mass (g) V=volume (L)

R=constant ((L*atm)/(mole*K))

T=Temperature (K)

Pressure Conversions:

(1) 1 atm = 1.01295 bar = 101,295 pascals (pa)

Sections of this handout were comprised from the following sources.

- (1) Pressure conversion table. (2012, May 14). Retrieved from http://wiki.xtronics.com/index.php/Pressure_Conversion_Table
- (2) X. Ge, X. Wang. Estimation of Freezing Point Depression, Boiling Point Elevation and Vaporization enthalpies of electrolyte solutions. Ind. Eng. Chem. Res. 48(2009)2229-2235. doi: 10.1021/ie801348c