

Equations potentially of interest:

Gas law:

PV=nRT

pH and acid base:

$$pH = -log[H^+]$$

$$pH + pOH = 14$$

$$K_{\rm w} = [H^+] + [OH^-] = 1 * 10^{-14}$$

$$pH = pK_a + \log(C_B/C_A)$$

Logarithms:

$$logA*B = logA + logB$$

$$log_A B = C - A^C = B$$

$$alogx = logx^a$$

$$log(A/B) = logA - logB$$

Algebra:

$$ax^2 + bx + c = 0$$
 <- 2nd degree polynomial for quadratic equation
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Equilibrium and free energy:

$$K_p = K_c(RT)/\Delta n$$

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta G^{o}_{rxn} = \Delta G^{o}_{products}$$
- $\Delta G^{o}_{reactants}$

$$\Delta G_{\rm rxn} = \Delta G^{\rm o}_{\rm rxn} + RT \ln Q$$

$$\Delta G_{\rm rxn} = RT \ln(Q/K)$$

$$K = e^{-\Delta Go/RT}$$

$$aA + bB \longrightarrow cC + dD \text{ Keq } \underline{[C]^c[D]^d}$$

$$[A]^a[B]^b$$

$$\Delta G = -T\Delta S_{univ}$$

 ΔG <0 --> spontaneous, reaction moves to right

 $\Delta G > O \longrightarrow$ not spontaneous, reaction moves to left

Q>K reactant favored, reaction moves to left

Q<K product favored, reaction moves to right

Works Cited

Coeckelenbergh, Yves. "General Chemistry II." Texas A&M University Corpus Christi. Dec. 2012. Lecture.

Laird, Brian B. University Chemistry. 1st ed. N.p.: McGraw-Hill Higher Education, 2008. Print.

Silberberg, Martin S. Principles of General Chemistry. Boston: McGraw-Hill Higher Education, 2007. Print.

Concentrations:

$$\begin{split} &M_1V_1=M_2V_2\\ &\text{molarity }(M)=\text{moles/liter}\\ &\text{molality }(m)=\text{moles solute/kg solvent}\\ &\text{mass percent}=\text{mass solute/mass solution}\\ &\text{mole fraction }(X_A)=\text{moles solute/moles solution}\\ &\text{mole fraction }(X_A)=\text{moles solute/moles solution}\\ &\text{percent yield}=(\text{actual/theoretical})*100\\ &\text{Others:}\\ &\Delta T_b=K_bm_c\\ &\Delta T_f=K_fm_c\\ &m_c=i*m\\ &S=K_Bln\Omega \end{split}$$

Constants that may be of interest:

 K_f = -1.86 °C kg/mol K_b = 0.512 °C kg/mol R= 0.08206 L*bar*mol⁻¹* K^{-1} R= 8.314 J*mol⁻¹* K^{-1} Avogadro's number = 6.022 * 10²³

Coeckelenbergh, Yves. "General Chemistry II." Texas A&M University Corpus Christi. Dec. 2012. Lecture.

Laird, Brian B. University Chemistry. 1st ed. N.p.: McGraw-Hill Higher Education, 2008. Print.

Silberberg, Martin S. Principles of General Chemistry. Boston: McGraw-Hill Higher Education, 2007. Print.